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Abstract —A unified computer-aided numerical approach based on the

finite-element method is developed for analyzing optical waves gnided by

dielectric stab waveguiding strnctnres with arbitrary nonlinear media. In

the formulations, both TE and TM polarizations are considered. For the

TM case, the biaxial nature, of nonlinear refractive index is considered

without any approximation. Numerical results are presented for nonlinear

TE and TM waves propagating in symmetric slab wavegnides. The depen-

dence of dispersion relations on the refractive-index profile of the film is

also examined.

I. INTRODUCTION

T HE PROPERTIES of nonlinear optical waves guided

by dielectric thin films are of great ‘interest because of

their unique features and their potentidl use in all-optical

signal processing devices, such as biitability, switching,

and upper and lower threshold devices and optical limiters

[1]-[6]. These applications have recently stimulated more

practical theoretical investigations of the behavior of the

nonlinear guided waves [7]–[28]., .

The representative methodology for studying these waves

propagating in a dielectric slab geometry has been to solve

nonlinear wave equations analytically [2]–[5]. Although in

this approach exact solutions are obtainable by solving a

transcendental equation, it is applicable only to tlie De-

polarized (s-polarized) waves propagating in media with

Kerr-like nonlinearity. Thus, if one wants to deal with

non-Kerr-like nonlinearity [15], [18], which is frequently

encountered in realistic situations, and TM-polarized (p-

polarized) waves [7], [9], [12], [13], [23], [25], [26], it is

necessary either to rely on unrealistic approximate proce-

dures or to solve the problem numerically. To date, the

main method has been the former. Only recently, attempts

for the latter have been made using the first integral of the

nonlinear wave equation [10], [18], the beam-propagation

method [17], [20], and the multilayer approximation [22],

all of which have been restricted to the case of TE polar-
ization. Although the TM polarization problem has re-

cently been discussed quite extensively in a few approxi-

mate ways [7] [9], [12], [13], [25], [26], very few numerical
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Fig, 1. Nonlinear slab waveguide and coordinate system.
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calculations have actually been carried out for dielectric

slab configurations. This is due to the fact that the wave

equation of the TM mode is considerably more difficult to

treat than its TE counterpart and the nonlinear material

exhibits the biaxidl nature of tht refractive index [4], [23],

because the TM mode necessarily involves two nonzero

electric-field components.

In this paper, to analyze systematically the stationary

mode characteristics of optical waves guided by dielectric

slab waveguides with arbitrary nonlinear media and with

arbitrary refractive-index distribution, a unified numerical

approach based on the finite-element technique is devel-

oped for both TE and TM waves. For the TM case, the

biaxial nature of the nonlinear refractive index is consid-

ered without any approximation. In this approach, self-

corisistent solutions are obtainable via a simple iterative

scheme. Furthermore, if one wants to accelerate the con-

vergence speed, it is also possible to apply a skillfull

technique such, as the Aitken method. Numerical results

are presented for nonlinear TE and TM waves guided by

symmetr~ slab waveguiding configurations bounded by

two identical nonlinear claddings, and several fascinating

features that have not yet been found are shown in a

comprehensive way. The dependence of dispersion char-

acteristics on the refractive-inde~ distribution of the film is

also investigated in some detail.

H. FINITE-ELEMENT FORMALISM

The geome~ry under consideration is shown in Fig. 1,

where t is the thickness of the film; n, the linear (low-

power) refractive index, and Z, the nonlinear optical coef-

ficient (i= 1,2, 3). For self-focusing action fit >0, whereas

for self-defocusing action Z, ‘: O. We assume that the

waveguide is composed of loss-free media and i3/dx -0.
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A. TE Waves (S-Polarized Waves) different elements, we obtain

We consider the following nonlinear relative permittivity [K(Ex)] {Ex}-(p\ko)2[M] {Ex} = {o} (5a)
C; for TE polarization:

(la) [K(EX)I =ZJ[({N}’{’4},) {N}{ N}=
ee

Cx‘ =c+aj(EX)

a = cocosfi, ~=n2 (lb) d{N} d{iV}T

dj dj 1dj (5b)

where COis the velocity of light in a vacuum ( CO= 3.00X108

m/s), COthe vacuum perrnittivity (CO= 8.85X 10-12 F/nI), [M]=~~{N}{N}Tdj (5C)
and ~( EX) a function representing flux-dependent permit-

tivity of nonlinear media. For the well-known Kerr-type

nonlinearity, ~( EX) = IllYl 2.
{E:}: Z{EX}C (5d)

Substituting (la) into Maxwell’s equations, the following
e

nonlinear Helmholtz-type equation is derived: j = koy (5e)

d2E
where c: is expanded as

%+( W-P)EX=O (2) ,;={N}T{,:}= (5f)
-.J

{C:}e= [E:,, f~,2 E;,,]T (5g)
where k. is the free-space wavenumber, ~ the phase

constant, and the wave factor exp { j( tit – flz ) } is implied, and the boundary term associated with the first term of the

where o is the angular frequency. left-hand side of (4) is dropped owing to the asymptotic

Dividing the cross section along the y axis of the guide conditions: EX = dEX /dy = O as y ~ + w. The explicit

(y> O) into a number of second-order line elements, the forms of element matrices necessary for computing (5b)

normalized electric fields within each element are defined and (5c) are given in the Appendix.

in terms of those at the nodal points: The total guided wave power per unit length along the x

axis is evaluated as

Ez={N}~{Ex}e

where

(3a)
1 +W

P=–
J

EXHY* dy =
2 .~

&:/:mlEX\2dy (6)
oo~

* denotes the complex conjugate and Z. is the
{N} =[N, N, N,]’ (3b) ‘here. . d

mtrmslc lmpe ante of a vacuum (Z. = 377 0).

N1=L1(2L1–1) N2 = L2(2L2 –1) To obtain c~ via (la), it is necessary to compute the

actual electric field EX without normalization. The relation

N3 = 4LIL2 (3C) lx&vm~w;&ec~l (EX) and the normalized (~X) fields

L1=(yJ–y)/l Lz = (y– yl),/l,
IEXI = @Xl (7)

1= Y2 – y, (3d)
where q is a scale factor. Substituting (5e) and (7) into (6),

q is obtained:

{~x} e= [G ‘z,, -z,,] ‘. (3e)

‘q= 4mzoA;’(p/ko)-lP , A.= 2~/ko (8a)
Here {N} is the shape function vector, T a transpose, and

{ ~X }, an electric field vector corresponding to the nodal where the usual normalization procedure of the eigenvec-

points within each element. tor of (5a),
Using Galerkin’s procedure on a normalized version of

(2) and integrating by parts, we obtain ~+~l~X12dJ=l (8b)
—cc

~~x Y= Y* —
is considered.

{N}7 - j“? ~ dy + k; jy2c:{N }~Xdy Equation (5a) is a nonlinear generalized eigenvalue

Y=Y1 Y1 Y1 problem whose ~igenvalue and eigenvector correspond to

(B/kO)2 and {E.}, respectively. Hence, one can solve it

-82~~{N}~.dy= {0} (4) self-consistently using the following iterative scheme:

(i) Specify n, Z, Ao, t, and P as input data and

where {O} is a null vector (3x 1). calculate the coefficient matrix [M].

Substituting (3a) into (4) and assembling the complete (ii) Assign initial values to ~/k. and { ~X } in an

matrices for the system by adding the contributions of all arbitrary way. A convenient way to choose these



HAYATA

(iii)

(iv)

(v)

et d.: FINITE-ELEMSNT FORMALISM

values is to use those for the linear case, i.e., (j = ~

in (la); we adopt this way in the present paper.

To obtain the nonlinear coefficient matrix [K(EX)],

calculate q, { EX }, and c: sequentially.

To obtain a new set of #/kO and { ~X }, solve the

matrix eigenvalue equation (5a).

Iterate the above procedures (iii) and (iv) until the

solution (eigenvalue) converges within the desired

criterion.

B. TM Waves (P-Polarized Waves).

We consider the following nonlinear relative permittivi-

ties c; and C: for TM polarization [4], [23]:

(9a)cj=6+aj(EY)+b~(E=)

~~=~+b~(EY)+a~(E,) (9b)

where the value of b depends on the particular nonlinear

mechanism. For example, for electronic nonlinearities b =

a/3, whereas for electrostrictive nonlinearities b = a [23].

Substituting (9a) and (9b) into Maxwell’s equations, the

following nonlinear Helmholtz-type equation is derived:

where the factor exp { j( ut – ~z ) } is implied.

Dividing the cross section along the y axis of the guide

(y> O) into a number of second-order line elements, the

normalized magnetic fields within each element are de-

fined in terms of those at the nodal points:

EX={N}’{RX},

{E.}e= [Z,l ‘x,2 ‘x,3]T
(ha)

(llb)

where { fiX }, is a magnetic field vector corresponding to

the nodal points within each element.

Using Galerkin’s procedure on a normalized version of

(10) and integrating by parts, we obtain

+ k: ~Y2{N}~Xdy –~2jY2:{N}~Xdy = {O}. (12)
Y1 Y1 ~y

Substituting (ha) into (12) and assembling the complete

matrices for the system by adding the contributions of all

different elements, we obtain

[K(HX)] {RX} -(~/kO)2[M(Hx)] {~X} = {O} (13a)

[K(Hx)]=~j[{N}{N}T-({N} T{I/,;},)
ee

d{N} d{N}~
.—

d~ d~ 1dj (13b)

[M(HX)] =~~({N}~{l/(j}e){N}{N}~dj (13c)
ee

{E}=z{~x}e (13d)
e
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where l/c[ (i = y, z) is expanded as

l/’c:= {N}~{l,’e(}, (13e)

{l/t:}e = [l/(;,l l/E;,2 1/(;,3] T (13f)

and the boundary term associated with the fi, st term of the

left-hand side of (12) is dropped t-wing to the asymptotic

conditions: HX = dHX/dy = O as y + + m. The explicit

forms of element matrices necessary for computing (13b)

and (13c) are given in the Appendix.

The total guided wave power per unit length along the x

axis is evaluated as

1 +Ix

/

-ZOP +~1’
P=–– EYH: dy = — —

2 -~ /
z ~ _ ;lHx12dy. (14)

o~y

To obtain ~~ and C; via (9a) and (9b), respectively, it :s

necessary to compute the actual magnetic field HX without

normalization. The relation between the actual (H,) and

the normalized (RX) fields can be written as

~ IHXI = &ljFxl (15)

where & is a scale factor. Substituting (5e) and (15) into

(14), ~ is obtained:

$=/~o)-lP =~/zo (16a)

where the usual normalization procedure of the eigenvec-

tor of (13a),

(16b)

is considered.

Once HX is obtained, the actual electric-field compo-

nents Ey and El necessary to evaluate C$ and c: via (9a)

and (9b), respectively, can be straightforwardly derived

with the help of Maxwell’s equations:

(17a)

(17b)

With these relations, the nodal electric field vectors for EY

and E, can be computed as

where

?=~2–jil=kol (18c)

F1 = –3HX,1 – HX,2 +4HX,~ (18d)

F2 = HX,l +3HX,1 –4HX,3 (18e)

F3=– HX,1+H3 ,2. (18f)

Equation (13a) is a nonlinear generalized eigenvalue

problem whose eigenvalue and eigenvector correspond to
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~+y=D/2
I

Fig. 2. Element division for the system of Fig. 1. The upper half of the
waveguide cross section N subdivided into 15 line elements; the num-

ber of nodal points is 31.

(B/ko)2 and {~.}, respectively. Hence, one can solve it
self-consistently using the following iterative scheme:

(i) Specify n, E, AO, t, and P as input dat~

(ii) Assign initial values to ~/kO and { HX } in an

arbitrary way. As with TE waves, a way to choose

these values is to use those for the linear case, i.e.,

‘ = C; = e in (9a) and (9b); we adopt this way in
‘Y
the present paper.

(iii) To obtain the nonlinear coefficient matrices

[K(HX)] and [M(HX)], calculate $, {HX}, { Ey},

{E= }, 6~, and C; sequentially. _
(iv) To obt~n a new set of ~/kO and { HX }, solve the

matrix eigenvalue equation (13a).

(v) Iterate the above procedures (iii) and (iv) until the

solution converges within the desired criterion.

Note that in the present modeling the nonlinear permit-

tivities are given by (9a) and (9b); therefore, the biaxial

nature of nonlinear material for TM-polarized waves is

considered without any approximate treatment such as

uniaxial approximations [7], [9], [12], [13], [25], [26].

III. NUMERICAL EXAMPLES AND DISCUSSION

We consider a linear thin film (Iyl < 1/2) bounded by

two identical nonlinear claddings. As a nonlinear material,

we concentrate on the liquid crystal MBBA [8], [11], [29]

because of its very large nonlinearity. Preliminary experi-

ments [29] with it have shown evidence for nonlinear

guided waves. The waveguide parameters [8], [11] are nl =

n~ = 1.55, nz = 1.57, til = Fzq= 10–9 m2/W (self-focusing

action), Z ~ = O, and the wavelength is 0.515 pm (Ar +

laser). As the f(E,) (i= x, y, z) in (la), (9a), and (9b), we

consider a power-law nonlinearity defined by [18],

f(EZ) = IEJ” (i=x, y,z) (19)

where a is a positive parameter representing a variety of

nonlinearities. For the Kerr-like nonlinearity, a = 2. Al-

though asymmetric modes [11], [14] can exist in nonlinear

1.60
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Fig. 3. Convergence behavior of effective refractive index. The solid
lines are of simple iteration, whereas the broken line is of the Aitken
method. (a) TEO mode. (b) TMO mode.

waveguides even for symmetric configurations, we con-

centrate solely on the symmetric or antisymmetric mode in

what follows.

The division profile used is illustrated in Fig. 2, where

only the upper half of the guide is considered because of

the symmetry nature of the system and -the field distribu-

tion. On y = D/2 (D = 7t), the Dirichlet-type boundary

condition, i.e., EX = O for TE mode and HX = O for TM

mode, is imposed because we consider the waves trapped

in a film or the vicinity of it.

First, to confirm the validity of the present algorithm,

we examine the convergence behavior of solutions versus

iteration times. Fig. 3 demonstrates the convergence of the

effective refractive index, taking the total optical power as

a parameter. Stable and monotonic convergence is ob-
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Fig. 4. Dependence of effective refractive index on total optlcaf power
for power-law nonlinearity. The Kerr-like nonlinearity corresponds to
a = 2. (a) TEO mode. (b) TEI mode.

served for both polarizations. Since exact analytical solu-

tions are available for TE waves, we compare in Fig. 3(a)

our numerical results with exact ones [11]. It is seen from

Fig. 3(a) that the solution converges to the exact value in

both the guided-wave (rzl < D/k. < n ~) and the surface-

wave (~/k. > n ~) regions.

Although a simple iterative scheme without any acceler-

ation is applied in Fig. 3, it is efficient to utilize skillful

techniques that can accelerate convergence speed. One of

E’
;

In
o
x
.

—x
w

1

(1)-/’ (1)

+(2) y=t
L—

/

(2)
+(l) y=o

k—

_——_l__~~

0 50 100
P, W/m

Fig. 5. Variation of local electric field strength as a function of total

optical power (kot = 8.1, a = 2).

straightforward ways for acceleration is the Aitken method,

whose algorithm is as follows [30]:

(sm-sm_J2
s;=sm —

--2sm_1+sM_~
(nz=2,3,4, . . . ) (20)

sm

where { SM} is a sequence of numbers composed of solu-

tions under iteration. The new sequence of numbers, {s~ },

is expected to converge faster than the original one. An

example of the effect of this technique is shown in Fig.

3(a) with a broken line for P== 80 W/m. Comparison

between the solid and broken lines successfully demon-

strates the usefulness of the technique.

Fig. 4 shows the dependence of the effective refractive

index on total optical power for TE modes. It is seen from

Fig. 4 that for Kerr-like media, a =2, the guided wave

changes into a surface wave at a certain power level. This

phenomenon is peculiar to nonlinear waveguides and has

no linear counterpart [11]. Furthermore, it is very interest-

ing to note that the characteristic is drastically changed by

a slight deviation from the Kerr-like nonlinearity. This

phenomenon is due to the fact that the threshold power,

which is defined by the total optical power for ~/k. = 1.57,

increases sensitively with decreasing a. This suggests that

the details of the nonlinearity are very important for

designing nonlinear integrated optics devices.

One of many fascinating features of nonlinear wave-

guides is the flux-dependent behavior of a field distribu-

tion. Fig. 5 shows the dependence of local electric field

strength on total optical power for a = 2 in Fig. 4(a). In

the range of low power level, the strength at the center

(y= O) of the film is larger than that at y = t in the

cladding, and both of them increase with increasing power.

However, in the range of high power leveI, the dominance

of field strength is reversed, and the strength at the center

decreases with increasing power, whereas that at y = t still

increases. This characteristic indiciites that the wave evolves
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Fig. 6. Dependence of effective refractive index on total optical power
for TMO mode. (a) Comparison with TEO mode. (b) Comparison with
approximate procedures.

into a single interface surface polariton [4], [5] as the

optical flux density increases.

Numerical results for TM polarization are shown in

Figs. 6–8, where a = 2 and kOt = 8.1. Fig. 6(a) shows the

dependence of the effective refractive indices on total

optical power for the electrostrictive (b = a) and electronic

(b= a/3) nonlinearities and compares it with that of the

,.-2 _
1 1 I 1 1 I r I I

—-— b=a

m

,0-3 _

‘\,L,/

,.-51 I 1 1 1 1 I I 1

0 50
—

100
P, W/m

Fig. 7. Modal birefnngence versus total opticaf power.

1

E
z

m
o
x

.,
—x
x

0.5

0

1 I I I 1 1 1 I 1

TMO

—-–b=a (2)

—b:a13

(1)

(2) +
1 1 ! 1 I I 1 1 1 1

50 100
P, W/m

Fig. 8. Variation of locaf magnetic field strength as a function of total
optical power.

TE counterpart. Characteristics similar to the TE mode are

found for the TM mode, particularly in the guided-wave

region.

Fig. 6(b) compares the results for the permittivities given

by (9a) and (9b) (case A) with those for two approximate

models (cases B and C) in which nonlinear permittivities

are assumed to depend solely on one of two nonzero

electric-field components. Since IEZ\ << IEYI in the present

configuration, case B gives far more accurate results than

case C. Again, it is evident from this investigation that the

appropriate modeling for the nonlinearity is very im-

portant for predicting intensity-dependent properties of

nonlinear guided-wave devices.
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Fig. 9. Effect of film index profiles on dispersion relations.
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Fig. 10. Dependence of effective refractive i~dex on total optical power
for triangular profile.

Fig. 7 exhibits the modal birefringence B ~ersus total

optical power. B is defined by

B = (P~~ – ~TM)/ko (21)

where PTE and j3TM me the phase constants of the TEo

and TMO modes, respectively- For both types of nonlinear-

ities, a minimum of the birefringence is observed at P = 25

W/m. Above this point, the value of the modal birefrin-

gence is greatly enhanced with increasing optical power.

Fig. 8 shows the dependence of local magnetic field

strength on total optical power. The same characteristics

are found as for the TE wave shown in Fig. 5.

Up to now, we have confined ourselves to a film with a

homogeneous refractive-index distribution. In what fol-

lows, we apply the present method to nonlinear wave-

guides with inhomogeneous index profiles and investigate

the relation between the refractive-index profile and the

characteristics. We consider here the following g-power

function as a refractive-index profile in the film:

c(y) =n*(y) =n; +(n; --n; )(l–/2tlg)g)

(M ~ ~lz) (’22)

where g is a positive parameter representing distributions;

the homogeneous profile corresponds to g = 6.

Fig. 9 shows an example of numerical results. It is found

from Fig. 9 that the behavior in the surface-wave region is

similar irrespective of g.

Fig. 10 examines the effective index versus total optical

power for triangular profile (g ❑=1). Just as in the step

profile (Fig. 4(a)), the characteristic is drastically changed

by a slight decrease in a.

IV. CONCLUSIONS

We have proposed a general-purpose approach based on

the finite-element method for analyzing optical waves

guided by dielectric slab waveguides with arbitrary nonlin-

ear media and with arbitrary refractive-index distribution.

Using this approach, we have solved several kinds of

waveguides that include non-Kerr-like media and an inho-

mogeneous film. For these realistic cases, the conventional

analytical approach is of little use. The most useful feature

of the present method is that it can treat TM waves

without any approximation for nonlinear permittivities.

Although we have concentrated solely on the symmetric

(or antisymr.netric) mode and the single-valued propa-

gation constant, one can apply the present method also to

the asymmetric mode and the multivalued propagation

constant frequently observed in high-frequency (large kol )

cases [8], [11], [14], [19], [21], [27] provided that the initial

value of the iteration is taken appropriately. Application of

the present scheme to these cases will be made in future.

APPENDIX

THE EXPLICIT FORMS OF ELEMENT MATRICES

The explicit forms of element matrices involving in (5b),

(5c), (lsb), and (13c) in the text are given by

/
– ‘~ ‘-’d-i-ia “Y
(i{N} Li{N}T _ 1

e dj

d 2 ‘i :1 ‘A2)j{ N}{ N} ’dy=~ -:
e
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1 37 6
S22= –~%+ @2+; q3

2 22 16

’23= – Kql– Eq2– E93

8 8 32
s33=~91+ 792+ ~93

[

mll m 12

f({~}T{q}e){~}{~}Tdy=~ m12 m22
e J’%3 m 23

13 1 1

’11 = 140 ‘1 – 140
—(?2+~93

1 1
m12 = –~91–~q2

- &

1 2 4
—.

m13 = H%- ~o~ 92+ ~o~ 93

1 13 1
m22= — ~%+ ~q2+~q3

2 1 4
m23= – ~q1+~92+ ~0593

4 4 16
—q~ + ~q3–—91+ ~05

’33 – 105

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A3g)

m13

m 23

m 33 I

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

(A4f)

(A4g)

where j = ICO1,{q}, = [ql qz q3]~, and the formula

J
i!j”! .

Jzu@= ~i+j+l)+ (i, j: nonnegative integers)
e

(A5)

has been used.
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