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Finite-Element Formalism for Nonlinear
Slab-Guided Waves

KAZUYA HAYATA, MICHIO NAGAI, AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract — A unified computer-aided numerical approach based on the
finite-element method is developed for analyzing optical waves guided by
dielectric stab waveguiding structures with arbitrary nonlinear media. In
the formulations, both TE and TM polarizations are considered. For the
TM case, the biaxial nature of nonlinear refractive index is considered
without any approximation. Numerical results are presented for nonlinear
TE and TM waves propagating in symmetric slab waveguides. The depen-
dence of dispersion relations on the refractive-index profile of the film is
also examined.

I. INTRODUCTION

HE PROPERTIES of nonlinear optical waves guided

by dielectric thin films are of great ‘interest because of
their unique features and their potentiil use in all-optical
signal processing devices, such as bistability, switching,
and upper and lower threshold devices and optical limiters
[1]-[6]. These applications have recently stimulated more
practical theoretical investigations of the behavior of the
nonlinear guided waves [7]-[28].

The representative methodology for studying these waves
propagating in a dielectric slab geometry has been to solve
nonlinear wave equations analytically [2]-[5]. Although in
this approach exact solutions are obtainable by solving a
transcendental equation, it is applicable only to the TE-
polarized (s-polarized) waves propagating in media with
Kerr-like nonlinearity. Thus, if one wants to deal with
non-Kerr-like nonlinearity [15], [18], which is frequently
encountered in realistic situations, and TM-polarized ( p-
polarized) waves [7], [9], [12], [13], [23], [25], [26], it is
necessary either to rely on unrealistic approximate proce-
dures or to solve the problem numerically. To date, the
main method has been the former. Only recently, attempts
for the latter have been made using the first integral of the
nonlinear wave equation [10], [18], the beam-propagation
method {17}, [20], and the multilayer approximation [22],
all of which have been restricted to the case of TE polar-
ization. Although the TM polarization problem has re-
cently been discussed quite extensively in a few approxi-
mate ways [7] [9), [12], [13], [25], [26], very few numerical
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calculations have actually been carried out for dielectric
slab configurations. This is due to the fact that the wave
equation of the TM mode is considerably more difficult to
treat than its TE counterpart and the nonlinear material
exhibits the biaxial nature of the refractive index [4], [23],
because the TM mode necessarily involves two nonzero
electric-field components.

In this paper, to analyze systematically the stationary
mode characteristics of optical waves guided by dielectric
slab waveguides with arbitrary nonlinear media and with
arbitrary refractive-index distribution, a unified numerical
approach based on the finite-element technique is devel-
oped for both TE and TM waves. For the TM case, the
biaxial nature of the nonlinear refractive index is consid-
ered without any approximation. In this approach, seif-
comnsistent solutions are obtainable via a simple iterative
scheme. Furthermore, if one wants to accelerate the con-
vergence speed, it is also possible to apply a skillfull
technique such as the Aitken method. Numerical results
are presented for nonlinear TE and TM waves guided by
symmetric slab waveguiding configurations bounded by
two identical nonlinear claddings, and several fascinating
features that have not yet been found are shown in a
comprehensive way. The dependence of dispersion char-
acteristics on the refractive-index distribution of the film is
also investigated in some detail.

II. FINITE-ELEMENT FORMALISM

The geometry under consideration is shown in Fig. 1,
where ¢ is the thickness of the film; », the linear (low-
power) refractive index, and 7, the nonlinear optical coef-
ficient (i =1,2,3). For self-focusing action #, > 0, whereas
for sclf-defocusing action #,<0. We assume that the
waveguide is composed of loss-free media and 9 /dx = 0.
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A. TE Waves (S-Polarized Waves)

We consider the following nonlinear relative permittivity
¢’ for TE polarization:

e.=e+af(E,) (1a)

a=ceen, e€=n> (1b)
where ¢, is the velocity of light in a vacuum (¢, = 3.00 X 10%
m/s), €, the vacuum permittivity (e, = 8.85xX 107> F/m),
and f(E,) a function representing flux-dependent permit-
tivity of nonlinear media. For the well-known Kerr-type
nonlinearity, f(E,) =|E,|*

Substituting (1a) into Maxwell’s equations, the following
nonlinear Helmholtz-type equation is derived:

d’E

dy?

+(kde,—B*)E,=0 (2)

where k, is the free-space wavenumber, 8 the phase
constant, and the wave factor exp { j(wt — fz)} is implied,
where w is the angular frequency.

Dividing the cross section along the y axis of the guide
(y = 0) into a number of second-order line elements, the
normalized electric fields within each element are defined
in terms of those at the nodal points:

E={N}"{E]}, (3a)

where

{N}=[N1 N, Na]T (3b)

=L,(2L,-1) N,=L,(2L,-1)
N;=4L,L, (3¢)
Li=(n-y)/1  Ly=(y=-n)/l
I=y,—»n (3d)
{E } [ x,1 _x2 Ex,S]T' (36)

Here { N} is the shape function vector, T a transpose, and
{E,}. an electric field vector corresponding to the nodal
points within each element.
Using Galerkin’s procedure on a normalized version of
(2) and integrating by parts, we obtain
dE. "7

»d{N} dE,
Ul () &

3Ny
Y1

—Bzfyyz{N}Exdy={0} (4)

where {0} is a null vector (3X1).
Substituting (3a) into (4) and assembling the complete
matrices for the system by adding the contributions of all
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different elements, we obtain

[K(EJ{E.} = (B/ko) TMI{ .} = {0}
[K(E)]=Z [|((M) (e} )N

d{NY d{N}T
& &

(M=% [(N} (N} &5
{E)=L{E).

e

(52)

dy (5b)

(5¢)
(5d)

(5e)

y=koy
where €/, is expanded as

e, ={N}"{e}, (5%)
{e)o=letn € €]’ (52)

and the boundary term associated with the first term of the
left-hand side of (4) is dropped owing to the asymptotic
conditions: E, =dE, /dy=0 as y— +o0. The explicit
forms of element matrices necessary for computing (5b)
and (5c) are given in the Appendix.

The total guided wave power per unit length along the x
axis is evaluated as

where * denotes the complex conjugate and Z, is the
intrinsic impedance of a vacuum (Z, =377 Q).

To obtain €/ via (la), it is necessary to compute the
actual electric field E, without normalization. The relation
between the actual (E.) and the normalized (E) fields
can be written as

|E,|=n|E,]| (7)

where 7 is a scale factor. Substituting (5¢) and (7) into (6),
7 18 obtained:

n=y4nZA3 (B /ky) P, (8a)

where the usual normalization procedure of the eigenvec-
tor of (5a),

Ao=2m/k,

+oo _
[ Erdar=1 (8b)
-0
is considered.
Equation (5a) is a nonlinear generalized eigenvalue
problem whose eigenvalue and eigenvector correspond to
(B/ky)? and { E_}, respectively. Hence, one can solve it

self-consistently using the following iterative scheme:

(i) Specify n, 1, Ay, ¢, and P as input data and
calculate the coefficient matrix [M].

(ii) Assign initial values to B/k, and {E,} in an
arbitrary way. A convenient way to choose these
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values is to use those for the linear case, i.c., €/ =€

in (1a); we adopt this way in the present paper.

To obtain the nonlinear coefficient matrix [ K(E, )],

calculate 4, { £, }, and €/, sequentially.

To obtain a new set of 8/k, and { E,}, solve the

matrix eigenvalue equation (5a).

(v) Tterate the above procedures (iii) and (iv) until the
solution (eigenvalue) converges within the desired
criterion.

(iif)
(iv)

B. TM Waves (P-Polarized Waves).

We consider the following nonlinear relative permittivi-
ties ¢}, and €/ for TM polarization [4], [23]:

e;—e+af( )+bf(E) (9a)
e, =e+bf(E,)+af(E,) (9b)

where the value of b depends on the particular nonlinear
mechanism. For example, for electronic nonlinearities b =
a /3, whereas for electrostrictive nonlinearities b = a [23].
Substituting (92) and (9b) into Maxwell’s equations, the
following nonlinear Helmholtz-type equation is derived:

d|(1dH, 2
+ ké—g— H,=0
dy\e, dy €

where the factor exp { j(w¢ ~ Bz)} is implied.

Dividing the cross section along the y axis of the guide
(y = 0) into a number of second-order line elements, the
normalized magnetic fields within each element are de-
fined in terms of those at the nodal points:

= (N}(1,), (112)
{H—x } e = [H—x,l Hx,2 HX,S] ! (11b)

where { H_}, is a magnetic field vector corresponding to
the nodal points within each element.

Using Galerkin’s procedure on a normalized version of
(10) and integrating by parts, we obtain

1 dH, fyzd{N} 1 dH,

(10)

=¥

’

dy € dy

Z

kgfyyz{N}ﬁxdy—BzfyZZ{N}ﬁxdy:{0}- (12)

Substituting (11a) into (12) and assembling the complete
matrices for the system by adding the contributions of all
different elements, we obtain

[KCH)](H,} = (8/ko)'[M(H)]{H,} = (0} (13a)
[K(H)] =X [N} V)= (V)T (/e )
e AN) d(N)T
ay ay
[M(E)] =X [((N} {176} J(N) (N} d7 (13¢)
(A)-Z(A), (13

dy (13b)
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where 1/¢/ (i = y, z) is expanded as
Ve ={N}T{1/e}, (13¢)
(e} o= el 1/eln /65" (130)

and the boundary term associated with the fiist term of the
left-hand side of (12) is dropped «~wing to the asymptotic
conditions: H,=dH, /dy=0 as y— +co. The explicit
forms of element matrices necessary for computing (13b)
and (13c) are given in the Appendix.

The total guided wave power per unit length along the x
axis is evaluated as

1 + oo

L Z, B
2

EHrdy=———
2 kg
To obtain €} and €; via (9a) and (9b), respectively, it s
necessary to compute the actual magnetic field H, without
normalization. The relation between the actual (H ) and
the normalized (H ) fields can be written as

|H,|= ¢ H,| (15)

where £ is a scale factor. Substituting (5¢) and (15) into
(14), £ is obtained:

—\4nZs NG (B ko) P =n/2Z,

where the usual normalization procedure of the eigenvec-
tor of (13a),

“IHxlzdy- (14)
€

— o0

(16a)

too 1 o o
[ SE) =1 (16b)
—0 € y
is considered.

Once H, is obtained, the actual electric-field compo-
nents £, and E, necessary to evaluate € and ¢ via (9a)
and (9b), respectively, can be straightforwardly derived
with the help of Maxwell’s equations:

B 1
E =—Zy——H 17
y Ok(, 6_; x ( a)
1 dH
E,= jZy——. 17b
z J 06; dy— ( )

With these relations, the nodal electric field vectors for E,
and E, can be computed as

(E,) =- Zof’“ I{’x,l Ij’x‘z ‘Ij’x,s JT (15a)
0 »,2 »,3
. T
{a}=%ﬁii oo (155)
where

I=J,= j1=kyl (18¢)
F,=-3H,,—-H_ ,+4H (184d)

Fy=H_, +3H,,—4H, (18¢)

F=-H_ +H,,. (18f)

Equation (13a) is a nonlinear generalized eigenvalue
problem whose eigenvalue and eigenvector correspond to
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Fig. 2. Element division for the system of Fig. 1. The upper half of the
waveguide cross section 1s subdivided into 15 line elements; the num-
ber of nodal points is 31.

(B/ky)* and {I?x}, respectively. Hence, one can solve it
self-consistently using the following iterative scheme:

(i) Specify n, 1, Ay, ¢, and P as input data.

(i) Assign initial values to 8/k, and {H.} in an
arbitrary way. As with TE waves, a way to choose
these values is to use those for the linear case, i.e.,
€,=¢;=c¢ in (92) and (9b); we adopt this way in

the present paper.

To obtain the nonlinear coefficient matrices

[K(H,)] and [M(H,))], calculate &, {H,}, {E,},

{E,}, €,, and ¢ sequentially. o

To obtain a new set of B,/k, and { H,}, solve the

matrix eigenvalue equation (13a).

(v) Iterate the above procedures (iii) and (iv) until the
solution converges within the desired criterion.

(ii1)

(iv)

Note that in the present modeling the nonlinear permit-
tivities are given by (%a) and (9b); therefore, the biaxial
nature of nonlinear material for TM-polarized waves is
considered without any approximate treatment such as
uniaxial approximations [7], [9], [12], [13], [25], [26].

III. NUMERICAL EXAMPLES AND DISCUSSION

We consider a linear thin film (|y|<¢/2) bounded by
two identical nonlinear claddings. As a nonlinear material,
we concentrate on the liquid crystal MBBA [8], [11], [29]
because of its very large nonlinearity. Preliminary experi-
ments [29] with it have shown evidence for nonlinear
guided waves. The waveguide parameters [8], [11] are n; =
ny =155, n,=157, ny=ny=10"° m*/W (self-focusing
action), 71, =0, and the wavelength is 0.515 pm (Ar™*
laser). As the f(E,) (i=x, y, z) in (1a), (9a), and (9b), we
consider a power-law nonlinearity defined by [18],

fE)=IE}"  (i=x,y,7) (19)
where « is a positive parameter representing a variety of

nonlinearities. For the Kerr-like nonlinearity, a=2. Al-
though asymmetric modes [11], [14] can exist in nonlinear
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Fig. 3. Convergence behavior of effective refractive index. The solid
lines are of simple iteration, whereas the broken line is of the Aitken
method. (a) TE, mode. (b) TM, mode.

waveguides even for symmetric configurations, we con-
centrate solely on the symmetric or antisymmetric mode in
what follows.

The division profile used is illustrated in Fig. 2, where
only the upper half of the guide is considered because of
the symmetry nature of the system and the field distribu-
tion. On y=D/2 (D="t), the Dirichlet-type boundary
condition, i.e., E =0 for TE mode and H, =0 for TM
mode, is imposed because we consider the waves trapped
in a film or the vicinity of it.

First, to confirm the validity of the present algorithm,
we examine the convergence behavior of solutions versus
iteration times. Fig. 3 demonstrates the convergence of the
effective refractive index, taking the total optical power as
a parameter. Stable and monotonic convergence is ob-
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Fig. 4. Dependence of effective refractive index on total optical power
for power-law nonlinearity. The Kerr-like nonlinearity corresponds to
a=2. (a) TE, mode. (b) TE; mode.

served for both polarizations. Since exact analytical solu-
tions are available for TE waves, we compare in Fig. 3(a)
our numerical results with exact ones [11]. It is seen from
Fig. 3(a) that the solution converges to the exact value in
both the guided-wave (n; <B8/ky,<n,) and the surface-
wave (8/k, > n,) regions.

Although a simple iterative scheme without any acceler-
ation is applied in Fig. 3, it is efficient to utilize skillful
techniques that can accelerate convergence speed. One of
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Fig. 5. Variation of local electric field strength as a function of total
optical power (kyt = 8.1, a=2).

straightforward ways for acceleration is the Aitken method,
whose algorithm is as follows [30]:

2
(sm - smﬁl)

Sy = 28,_1F S,,_1

s - (m=2,3,4,---) (20)

where {s,,} is a sequence of numbers composed of solu-
tions under iteration. The new sequence of numbers, {s,},
1s expected to converge faster than the original one. An
example of the effect of this technique is shown in Fig.
3(a) with a broken line for P=-80 W,/m. Comparison
between the solid and broken lines successfully demon-
strates the usefullness of the technique.

Fig. 4 shows the dependence of the effective refractive
index on total optical power for TE modes. It is seen from
Fig. 4 that for Kerr-like media, a =2, the guided wave
changes into a surface wave at a certain power level. This
phenomenon is peculiar to nonlinear waveguides and has
no linear counterpart [11]. Furthermore, it is very interest-
ing to note that the characteristic is drastically changed by
a slight deviation from the Kerr-like nonlinearity. This
phenomenon is due to the fact that the threshold power,
which is defined by the total optical power for 8/k,=1.57,
increases sensitively with decreasing «. This suggests that
the details of the nonlinearity are very important for
designing nonlinear integrated optics devices.

One of many fascinating features of nonlinear wave-
guides is the flux-dependent behavior of a field distribu-
tion. Fig. 5 shows the dependence of local electric field
strength on total optical power for «=2 in Fig. 4(a). In
the range of low power level, the strength at the center
(y=0) of the film is larger than that at y=1¢ in the
cladding, and both of them increase with increasing power.
However, in the range of high power level, the dominance
of field strength is reversed, and the strength at the center
decreases with increasing power, whereas that at y = ¢ still
increases. This characteristic indicates that the wave evolves
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Fig. 6. Dependence of effective refractive index on total optical power
for TM,, mode. (a) Comparison with TE, mode. (b) Comparison with
approximate procedures.

into a single interface surface polariton [4], [5] as the
optical flux density increases.

Numerical results for TM polarization are shown in
Figs. 6-8, where a=2 and k,t = 8.1. Fig. 6(a) shows the
dependence of the effective refractive indices on total
optical power for the electrostrictive (b = a) and electronic
(b = a /3) nonlinearities and compares it with that of the
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Fig. 8. Variation of local magnetic field strength as a function of total

optical power.

TE counterpart. Characteristics similar to the TE mode are
found for the TM mode, particularly in the guided-wave
region,

Fig. 6(b) compares the results for the permittivities given
by (9a) and (9b) (case A) with those for two approximate
models (cases B and C) in which nonlinear permittivities
are assumed to depend solely on one of two nonzero
electric-field components. Since |E,| < |E,| in the present
configuration, case B gives far more accurate results than
case C. Again, it is evident from this investigation that the
appropriate modeling for the nonlinearity is very im-
portant for predicting intensity-dependent properties of
nonlinear guided-wave devices.
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for triangular profile. '
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Fig. 7 exhibits the modal birefringence B versus total
optical power. B is defined by

B= (B~ B/ ko (21)
where Bz and Bq are the phase constants of the TE,
and TM, modes, respectively. For both types of nonlinear-
ities, a minimum of the birefringence is observed at P = 25
W /m. Above this point, the value of the modal birefrin-
gence is greatly enhanced with increasing optical power.
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Fig. 8 shows the dependence of local magnetic field
strength on total optical power. The same characteristics
are found as for the TE wave shown in Fig. 5.

Up to now, we have confined ourselves to a film with a
homogeneous refractive-index distribution. In what fol-
lows, we apply the present method to nonlinear wave-
guides with inhomogeneous index profiles and investigate
the relation between the refractive-index profile and the
characteristics. We consider here the following g-power
function as a refractive-index profile in the film:

e(y)=n*(y) =ni+(n3-n})(1-Ry/1%)
(yl<1/2) (22)

where g is a positive parameter representing distributions;
the homogeneous profile correspands to g = oo.

Fig. 9 shows an example of numerical results. It is found
from Fig. 9 that the behavior in the surface-wave region is
similar irrespective of g.

Fig. 10 examines the effective index versus total optical
power for triangular profile (g=1). Just as in the step
profile (Fig. 4(a)), the characteristic is drastically changed
by a slight decrease in a.

IV. CONCLUSIONS

We have proposed a general-purpose approach based on
the finite-element method for analyzing optical waves
guided by dielectric slab waveguides with arbitrary nonlin-
ear media and with arbitrary refractive-index distribution.
Using this approach, we have solved several kinds of
waveguides that include non-Kerr-like media and an inho-
mogeneous film. For these realistic cases, the conventional
analytical approach is of little use. The most useful feature
of the present method is that it can treat TM waves
without any approximation for nonlinear permittivities.

Although we have concentrated solely on the symmetric
(or antisymmetric) mode and the single-valued propa-
gation constant, one can apply the present method also to
the asymmetric mode and the multivalued propagation
constant frequently observed in high-frequency (large k?)
cases [8], [11], [14], [19], [21], [27] provided that the initial
value of the iteration is taken appropriately. Application of
the present scheme to these cases will be made in future.

APPENDIX
Tue ExpLICIT FORMS OF ELEMENT MATRICES

The explicit forms of element matrices involving in (5b),
(5¢), (13b), and (13c) in the text are given by

d{N} d{N}" 1l 7 1 -8
Rty dy_=__{ N
e & b Mi_g -8 16
il 4 -1 2
[V Ny =5 -1 4 2| (A2)
¢ 2 2 16
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- d{N} d{N}" 1 S11 S Si3
L({N} {q}")d—f—dy—dy=7 ii ::zj izj
(A3a)
37. 1 6
S11=5‘11_T642+§‘13 (A3b)
7 7 2
S12= %‘h + %‘12 - Eqs (A3c)
22 2 16
S13=“Eq1“g‘12"ﬁ‘13 (A3d)
1 37 6
Sn="1,0t 3072 T3 (A3e)
2 22 16
§p3 =~ 175“11 - E‘Iz - '1‘5113 (A3f)
8 8 32
Su=ghtsht 5% (A3g)
My My My
f({N}T{q}e){N}{N}Tdf=i My My My
¢ My My Mg
(Ada)
13 1 1
m11=m‘h_m‘b+i‘13 (A4b)
1 1 2
m12=_m41_m612—ﬁ”§‘13 (Adc)
1 2 4
my3= ?1“11 - Eg‘h + ﬁ‘b (A4d)
1 13 1
mzzz_m‘h‘*'m%*‘ﬁ% (Ade)
2 1 4
Moy = — ﬁ‘h + ‘2‘i"12 + ﬁ‘h (Adt)
4 4 16
m33zﬁ‘11+i’6§‘12+§‘13 (Adg)

where [ =kol, {q},=[q: 4, ¢;]1", and the formula

iy

—1 i, j: nonnegative integers
(i+j+1) (i, & gers)

[riLsdr=
(A5)

has been used.
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